État de disponibilité: | |
---|---|
1. Notes : 0,22 ~ 500 KV (porcelaine), 0,22 ~ 220 KV (composite)
2. Application : pour la protection du système de transmission et de distribution d'énergie contre les surtensions.
3. Caractéristiques :
1) Un parafoudre en oxyde métallique composite à boîtier en polymère de silicone et des parafoudres en oxyde métallique à boîtier en porcelaine sont disponibles.
2)Installation et maintenance faciles.
3)Bonne capacité d'étanchéité pour assurer un fonctionnement fiable.
4)La protection et la fiabilité du parafoudre ont été grandement améliorées.
1. Température de l'air ambiant : -40℃ ~+40℃ ;
2. Altitude:<=2000m;
3. Fréquence : 48Hz~62Hz ;
4. La tension de fréquence d'alimentation appliquée entre les bornes du parafoudre ne doit pas dépasser la tension de fonctionnement continue du parafoudre ;
5. L'intensité du tremblement de terre est inférieure à 8 degrés ;
6. Max.La vitesse du vent est de 35m/s.
1. Parafoudre de type boîtier en polymère d'oxyde métallique (sans espace) pour système AC (série 5kA)
Modèle | Tension nominale (kVr.ms) | Tension de fonctionnement continue (KVr.ms) | Tension résiduelle de choc de foudre sous courant nominal de décharge (<=KVp) | Classe de décharge de ligne | Ligne de fuite(mm) | Le courant d'impulsion d'onde carrée de 2 ms résiste (A) | Résistance aux impulsions de courant élevé 4/10 μ (KAp) |
YH-5W-6 | 6 | 5.1 | 18 | 320 | 150 | 65 | |
YH-5W-9 | 9 | 7.65 | 27 | 430 | 150 | 65 | |
YH-5W-12 | 12 | 10.2 | 36 | 430 | 150 | 65 | |
YH-5W-15 | 15 | 12.75 | 45 | 530 | 150 | 65 | |
YH-5W-18 | 18 | 15.3 | 54 | 530 | 150 | 65 | |
YH-5W-21 | 21 | 16.8 | 63 | 640 | 150 | 65 | |
YH-5W-24 | 24 | 19.2 | 72 | 640 | 150 | 65 | |
YH-5W-27 | 27 | 21.6 | 81 | 740 | 150 | 65 | |
YH-5W-30 | 30 | 24 | 90 | 890 | 150 | 65 | |
YH-5W-33 | 33 | 26.4 | 99 | 890 | 150 | 65 | |
YH-5W-36 | 36 | 28.8 | 108 | 1115 | 150 | 65 |
2. Parafoudre de type boîtier en polymère d'oxyde métallique (sans espace) pour système AC (série 10KAs)
Modèle | Tension nominale (kVr.ms) | Tension de fonctionnement continue (KVr.ms) | Tension résiduelle de choc de foudre sous courant nominal de décharge (<=KVp) | Classe de décharge de ligne | Ligne de fuite(mm) | Le courant d'impulsion d'onde carrée de 2 ms résiste (A) | Résistance aux impulsions de courant élevé 4/10 μ (KAp) |
YH-10W-6 | 6 | 5.1 | 18 | 1 | 320 | 250 | 100 |
YH-10W-9 | 9 | 7.65 | 27 | 1 | 430 | 250 | 100 |
YH-10W-12 | 12 | 10.2 | 36 | 1 | 430 | 250 | 100 |
YH-10W-15 | 15 | 12.75 | 45 | 1 | 530 | 250 | 100 |
YH-10W-18 | 18 | 15.3 | 54 | 1 | 530 | 250 | 100 |
YH-10W-21 | 21 | 16.8 | 63 | 1 | 640 | 250 | 100 |
YH-10W-24 | 24 | 19.2 | 72 | 1 | 740 | 250 | 100 |
YH-10W-27 | 27 | 21.6 | 81 | 1 | 740 | 250 | 100 |
YH-10W-30 | 30 | 24 | 90 | 1 | 890 | 250 | 100 |
YH-10W-33 | 33 | 26.4 | 99 | 1 | 890 | 250 | 100 |
YH-10W-36 | 36 | 28.8 | 108 | 1 | 1115 | 250 | 100 |
YH-10W-42 | 42 | 33.6 | 126 | 2 | 1260 | 400 | 100 |
YH-10W-48 | 48 | 39 | 139 | 2 | 1260 | 400 | 100 |
YH-10W-54 | 54 | 42 | 160 | 2 | 1260 | 400 | 100 |
YH-10W-60 | 60 | 48 | 178 | 2 | 1465 | 400 | 100 |
YH-10W-66 | 66 | 52.8 | 196 | 2 | 1465 | 400 | 100 |
YH-10W-72 | 72 | 57 | 214 | 2 | 2255 | 400 | 100 |
YH-10W-84 | 84 | 67.2 | 244 | 2 | 2255 | 400 | 100 |
YH-10W-90 | 90 | 72.5 | 249 | 2 | 2255 | 400 | 100 |
YH-10W-96 | 96 | 75 | 265 | 3 | 3555 | 800 | 100 |
YH-10W-108 | 108 | 84 | 281 | 3 | 3555 | 800 | 100 |
YH-10W-120 | 120 | 96 | 300 | 3 | 4153 | 800 | 100 |
YH-10W-150 | 150 | 120 | 416 | 3 | 5040 | 800 | 100 |
YH-10W-200 | 200 | 156 | 520 | 3 | 7110 | 800 | 100 |
3. Parafoudre de type boîtier en polymère d'oxyde métallique (sans espace) pour système CA (série 20KA)
Modèle | Tension nominale (kVr.ms) | Tension de fonctionnement continue (KVr.ms) | Tension résiduelle de choc de foudre sous courant nominal de décharge (<=KVp) | Classe de décharge de ligne | Ligne de fuite(mm) | Le courant d'impulsion d'onde carrée de 2 ms résiste (A) | Résistance aux impulsions de courant élevé 4/10 μ (KAp) |
YH-20W-108 | 108 | 84 | 281 | 3 | 3555 | 800 | 100 |
YH-20W-120 | 120 | 96 | 300 | 3 | 4153 | 800 | 100 |
YH-20W-150 | 150 | 120 | 416 | 3 | 5040 | 800 | 100 |
YH-20W-200 | 200 | 156 | 520 | 3 | 7110 | 800 | 100 |
4. Parafoudre de type boîtier en porcelaine à oxyde métallique (sans espace) pour système CA (série 5KA)
Modèle | Tension nominale (kVr.ms) | Tension de fonctionnement continue (KVr.ms) | Tension résiduelle de choc de foudre sous courant nominal de décharge (<=KVp) | Classe de décharge de ligne | Ligne de fuite(mm) | Le courant d'impulsion d'onde carrée de 2 ms résiste (A) | Résistance aux impulsions de courant élevé 4/10 μ (KAp) |
Y5W-6 | 6 | 5.1 | 18 | 280 | 150 | 65 | |
Y5W-9 | 9 | 7.65 | 27 | 320 | 150 | 65 | |
Y5W-12 | 12 | 10.2 | 36 | 320 | 150 | 65 | |
Y5W-15 | 15 | 12.75 | 45 | 450 | 150 | 65 | |
Y5W-18 | 18 | 15.3 | 54 | 450 | 150 | 65 | |
Y5W-21 | 21 | 16.8 | 63 | 450 | 150 | 65 | |
Y5W-24 | 24 | 19.2 | 72 | 510 | 150 | 65 | |
Y5W-27 | 27 | 21.6 | 81 | 510 | 150 | 65 | |
Y5W-30 | 30 | 24 | 90 | 890 | 150 | 65 | |
Y5W-33 | 33 | 26.4 | 99 | 890 | 150 | 65 | |
Y5W-36 | 36 | 28.8 | 108 | 890 | 150 | 65 |
5. Parafoudre de type boîtier en polymère d'oxyde métallique (sans espace) pour système CA (série 10KA)
Modèle | Tension nominale (kVr.ms) | Tension de fonctionnement continue (KVr.ms) | Tension résiduelle de choc de foudre sous courant nominal de décharge (<=KVp) | Classe de décharge de ligne | Ligne de fuite(mm) | Le courant d'impulsion d'onde carrée de 2 ms résiste (A) | Résistance aux impulsions de courant élevé 4/10 μ (KAp) |
Y10W-6 | 6 | 5.1 | 18 | 1 | 280 | 250 | 100 |
Y10W-9 | 9 | 7.65 | 27 | 1 | 320 | 250 | 100 |
Y10W-12 | 12 | 10.2 | 36 | 1 | 320 | 250 | 100 |
Y10W-15 | 15 | 12.75 | 45 | 1 | 450 | 250 | 100 |
Y10W-18 | 18 | 15.3 | 54 | 1 | 450 | 250 | 100 |
Y10W-21 | 21 | 16.8 | 63 | 1 | 450 | 250 | 100 |
Y10W-24 | 24 | 19.2 | 72 | 1 | 510 | 250 | 100 |
Y10W-27 | 27 | 21.6 | 81 | 1 | 510 | 250 | 100 |
Y10W-30 | 30 | 24 | 90 | 1 | 890 | 250 | 100 |
Y10W-33 | 33 | 26.4 | 99 | 1 | 890 | 250 | 100 |
Y10W-36 | 36 | 28.8 | 108 | 1 | 890 | 250 | 100 |
Y10W-42 | 42 | 33.6 | 126 | 2 | 1256 | 400 | 100 |
Y10W-48 | 48 | 39 | 139 | 2 | 1256 | 400 | 100 |
Y10W-54 | 54 | 42 | 160 | 2 | 1256 | 400 | 100 |
Y10W-60 | 60 | 48 | 178 | 2 | 1440 | 400 | 100 |
Y10W-66 | 66 | 52.8 | 196 | 2 | 1440 | 400 | 100 |
Y10W-72 | 72 | 57 | 214 | 2 | 1440 | 400 | 100 |
Y10W-84 | 84 | 67.2 | 244 | 2 | 2200 | 400 | 100 |
Y10W-90 | 90 | 72.5 | 249 | 2 | 2200 | 400 | 100 |
Y10W-96 | 96 | 75 | 265 | 3 | 3350 | 800 | 100 |
Y10W-108 | 108 | 84 | 281 | 3 | 3350 | 800 | 100 |
Y10W-120 | 120 | 96 | 300 | 3 | 3948 | 800 | 100 |
Y10W-150 | 150 | 120 | 416 | 3 | 4400 | 800 | 100 |
Y10W-200 | 200 | 156 | 520 | 3 | 6700 | 800 | 100 |
6. Parafoudre de type boîtier en polymère d'oxyde métallique (sans espace) pour système CA (série 20KA)
Modèle | Tension nominale (kVr.ms) | Tension de fonctionnement continue (KVr.ms) | Tension résiduelle de choc de foudre sous courant nominal de décharge (<=KVp) | Classe de décharge de ligne | Ligne de fuite(mm) | Le courant d'impulsion d'onde carrée de 2 ms résiste (A) | Résistance aux impulsions de courant élevé 4/10 μ (KAp) |
Y20W-108 | 108 | 84 | 281 | 3 | 3555 | 800 | 100 |
Y20W-120 | 120 | 96 | 300 | 3 | 4106 | 800 | 100 |
Y20W-150 | 150 | 120 | 416 | 3 | 4400 | 800 | 100 |
Y20W-200 | 200 | 156 | 520 | 3 | 6700 | 800 | 100 |
Y20W-444 | 444 | 324 | 1106 | 4 | 17052 | 2000 | 100 |
1. Notes : 0,22 ~ 500 KV (porcelaine), 0,22 ~ 220 KV (composite)
2. Application : pour la protection du système de transmission et de distribution d'énergie contre les surtensions.
3. Caractéristiques :
1) Un parafoudre en oxyde métallique composite à boîtier en polymère de silicone et des parafoudres en oxyde métallique à boîtier en porcelaine sont disponibles.
2)Installation et maintenance faciles.
3)Bonne capacité d'étanchéité pour assurer un fonctionnement fiable.
4)La protection et la fiabilité du parafoudre ont été grandement améliorées.
1. Température de l'air ambiant : -40℃ ~+40℃ ;
2. Altitude:<=2000m;
3. Fréquence : 48Hz~62Hz ;
4. La tension de fréquence d'alimentation appliquée entre les bornes du parafoudre ne doit pas dépasser la tension de fonctionnement continue du parafoudre ;
5. L'intensité du tremblement de terre est inférieure à 8 degrés ;
6. Max.La vitesse du vent est de 35m/s.
1. Parafoudre de type boîtier en polymère d'oxyde métallique (sans espace) pour système AC (série 5kA)
Modèle | Tension nominale (kVr.ms) | Tension de fonctionnement continue (KVr.ms) | Tension résiduelle de choc de foudre sous courant nominal de décharge (<=KVp) | Classe de décharge de ligne | Ligne de fuite(mm) | Le courant d'impulsion d'onde carrée de 2 ms résiste (A) | Résistance aux impulsions de courant élevé 4/10 μ (KAp) |
YH-5W-6 | 6 | 5.1 | 18 | 320 | 150 | 65 | |
YH-5W-9 | 9 | 7.65 | 27 | 430 | 150 | 65 | |
YH-5W-12 | 12 | 10.2 | 36 | 430 | 150 | 65 | |
YH-5W-15 | 15 | 12.75 | 45 | 530 | 150 | 65 | |
YH-5W-18 | 18 | 15.3 | 54 | 530 | 150 | 65 | |
YH-5W-21 | 21 | 16.8 | 63 | 640 | 150 | 65 | |
YH-5W-24 | 24 | 19.2 | 72 | 640 | 150 | 65 | |
YH-5W-27 | 27 | 21.6 | 81 | 740 | 150 | 65 | |
YH-5W-30 | 30 | 24 | 90 | 890 | 150 | 65 | |
YH-5W-33 | 33 | 26.4 | 99 | 890 | 150 | 65 | |
YH-5W-36 | 36 | 28.8 | 108 | 1115 | 150 | 65 |
2. Parafoudre de type boîtier en polymère d'oxyde métallique (sans espace) pour système AC (série 10KAs)
Modèle | Tension nominale (kVr.ms) | Tension de fonctionnement continue (KVr.ms) | Tension résiduelle de choc de foudre sous courant nominal de décharge (<=KVp) | Classe de décharge de ligne | Ligne de fuite(mm) | Le courant d'impulsion d'onde carrée de 2 ms résiste (A) | Résistance aux impulsions de courant élevé 4/10 μ (KAp) |
YH-10W-6 | 6 | 5.1 | 18 | 1 | 320 | 250 | 100 |
YH-10W-9 | 9 | 7.65 | 27 | 1 | 430 | 250 | 100 |
YH-10W-12 | 12 | 10.2 | 36 | 1 | 430 | 250 | 100 |
YH-10W-15 | 15 | 12.75 | 45 | 1 | 530 | 250 | 100 |
YH-10W-18 | 18 | 15.3 | 54 | 1 | 530 | 250 | 100 |
YH-10W-21 | 21 | 16.8 | 63 | 1 | 640 | 250 | 100 |
YH-10W-24 | 24 | 19.2 | 72 | 1 | 740 | 250 | 100 |
YH-10W-27 | 27 | 21.6 | 81 | 1 | 740 | 250 | 100 |
YH-10W-30 | 30 | 24 | 90 | 1 | 890 | 250 | 100 |
YH-10W-33 | 33 | 26.4 | 99 | 1 | 890 | 250 | 100 |
YH-10W-36 | 36 | 28.8 | 108 | 1 | 1115 | 250 | 100 |
YH-10W-42 | 42 | 33.6 | 126 | 2 | 1260 | 400 | 100 |
YH-10W-48 | 48 | 39 | 139 | 2 | 1260 | 400 | 100 |
YH-10W-54 | 54 | 42 | 160 | 2 | 1260 | 400 | 100 |
YH-10W-60 | 60 | 48 | 178 | 2 | 1465 | 400 | 100 |
YH-10W-66 | 66 | 52.8 | 196 | 2 | 1465 | 400 | 100 |
YH-10W-72 | 72 | 57 | 214 | 2 | 2255 | 400 | 100 |
YH-10W-84 | 84 | 67.2 | 244 | 2 | 2255 | 400 | 100 |
YH-10W-90 | 90 | 72.5 | 249 | 2 | 2255 | 400 | 100 |
YH-10W-96 | 96 | 75 | 265 | 3 | 3555 | 800 | 100 |
YH-10W-108 | 108 | 84 | 281 | 3 | 3555 | 800 | 100 |
YH-10W-120 | 120 | 96 | 300 | 3 | 4153 | 800 | 100 |
YH-10W-150 | 150 | 120 | 416 | 3 | 5040 | 800 | 100 |
YH-10W-200 | 200 | 156 | 520 | 3 | 7110 | 800 | 100 |
3. Parafoudre de type boîtier en polymère d'oxyde métallique (sans espace) pour système CA (série 20KA)
Modèle | Tension nominale (kVr.ms) | Tension de fonctionnement continue (KVr.ms) | Tension résiduelle de choc de foudre sous courant nominal de décharge (<=KVp) | Classe de décharge de ligne | Ligne de fuite(mm) | Le courant d'impulsion d'onde carrée de 2 ms résiste (A) | Résistance aux impulsions de courant élevé 4/10 μ (KAp) |
YH-20W-108 | 108 | 84 | 281 | 3 | 3555 | 800 | 100 |
YH-20W-120 | 120 | 96 | 300 | 3 | 4153 | 800 | 100 |
YH-20W-150 | 150 | 120 | 416 | 3 | 5040 | 800 | 100 |
YH-20W-200 | 200 | 156 | 520 | 3 | 7110 | 800 | 100 |
4. Parafoudre de type boîtier en porcelaine à oxyde métallique (sans espace) pour système CA (série 5KA)
Modèle | Tension nominale (kVr.ms) | Tension de fonctionnement continue (KVr.ms) | Tension résiduelle de choc de foudre sous courant nominal de décharge (<=KVp) | Classe de décharge de ligne | Ligne de fuite(mm) | Le courant d'impulsion d'onde carrée de 2 ms résiste (A) | Résistance aux impulsions de courant élevé 4/10 μ (KAp) |
Y5W-6 | 6 | 5.1 | 18 | 280 | 150 | 65 | |
Y5W-9 | 9 | 7.65 | 27 | 320 | 150 | 65 | |
Y5W-12 | 12 | 10.2 | 36 | 320 | 150 | 65 | |
Y5W-15 | 15 | 12.75 | 45 | 450 | 150 | 65 | |
Y5W-18 | 18 | 15.3 | 54 | 450 | 150 | 65 | |
Y5W-21 | 21 | 16.8 | 63 | 450 | 150 | 65 | |
Y5W-24 | 24 | 19.2 | 72 | 510 | 150 | 65 | |
Y5W-27 | 27 | 21.6 | 81 | 510 | 150 | 65 | |
Y5W-30 | 30 | 24 | 90 | 890 | 150 | 65 | |
Y5W-33 | 33 | 26.4 | 99 | 890 | 150 | 65 | |
Y5W-36 | 36 | 28.8 | 108 | 890 | 150 | 65 |
5. Parafoudre de type boîtier en polymère d'oxyde métallique (sans espace) pour système CA (série 10KA)
Modèle | Tension nominale (kVr.ms) | Tension de fonctionnement continue (KVr.ms) | Tension résiduelle de choc de foudre sous courant nominal de décharge (<=KVp) | Classe de décharge de ligne | Ligne de fuite(mm) | Le courant d'impulsion d'onde carrée de 2 ms résiste (A) | Résistance aux impulsions de courant élevé 4/10 μ (KAp) |
Y10W-6 | 6 | 5.1 | 18 | 1 | 280 | 250 | 100 |
Y10W-9 | 9 | 7.65 | 27 | 1 | 320 | 250 | 100 |
Y10W-12 | 12 | 10.2 | 36 | 1 | 320 | 250 | 100 |
Y10W-15 | 15 | 12.75 | 45 | 1 | 450 | 250 | 100 |
Y10W-18 | 18 | 15.3 | 54 | 1 | 450 | 250 | 100 |
Y10W-21 | 21 | 16.8 | 63 | 1 | 450 | 250 | 100 |
Y10W-24 | 24 | 19.2 | 72 | 1 | 510 | 250 | 100 |
Y10W-27 | 27 | 21.6 | 81 | 1 | 510 | 250 | 100 |
Y10W-30 | 30 | 24 | 90 | 1 | 890 | 250 | 100 |
Y10W-33 | 33 | 26.4 | 99 | 1 | 890 | 250 | 100 |
Y10W-36 | 36 | 28.8 | 108 | 1 | 890 | 250 | 100 |
Y10W-42 | 42 | 33.6 | 126 | 2 | 1256 | 400 | 100 |
Y10W-48 | 48 | 39 | 139 | 2 | 1256 | 400 | 100 |
Y10W-54 | 54 | 42 | 160 | 2 | 1256 | 400 | 100 |
Y10W-60 | 60 | 48 | 178 | 2 | 1440 | 400 | 100 |
Y10W-66 | 66 | 52.8 | 196 | 2 | 1440 | 400 | 100 |
Y10W-72 | 72 | 57 | 214 | 2 | 1440 | 400 | 100 |
Y10W-84 | 84 | 67.2 | 244 | 2 | 2200 | 400 | 100 |
Y10W-90 | 90 | 72.5 | 249 | 2 | 2200 | 400 | 100 |
Y10W-96 | 96 | 75 | 265 | 3 | 3350 | 800 | 100 |
Y10W-108 | 108 | 84 | 281 | 3 | 3350 | 800 | 100 |
Y10W-120 | 120 | 96 | 300 | 3 | 3948 | 800 | 100 |
Y10W-150 | 150 | 120 | 416 | 3 | 4400 | 800 | 100 |
Y10W-200 | 200 | 156 | 520 | 3 | 6700 | 800 | 100 |
6. Parafoudre de type boîtier en polymère d'oxyde métallique (sans espace) pour système CA (série 20KA)
Modèle | Tension nominale (kVr.ms) | Tension de fonctionnement continue (KVr.ms) | Tension résiduelle de choc de foudre sous courant nominal de décharge (<=KVp) | Classe de décharge de ligne | Ligne de fuite(mm) | Le courant d'impulsion d'onde carrée de 2 ms résiste (A) | Résistance aux impulsions de courant élevé 4/10 μ (KAp) |
Y20W-108 | 108 | 84 | 281 | 3 | 3555 | 800 | 100 |
Y20W-120 | 120 | 96 | 300 | 3 | 4106 | 800 | 100 |
Y20W-150 | 150 | 120 | 416 | 3 | 4400 | 800 | 100 |
Y20W-200 | 200 | 156 | 520 | 3 | 6700 | 800 | 100 |
Y20W-444 | 444 | 324 | 1106 | 4 | 17052 | 2000 | 100 |
Les fusibles abandonnés (ou les fusibles de type expulsion) sont un composant critique des réseaux de distribution aérienne, servant à la fois de dispositif de protection et d'un commutateur d'isolement. Ils sont conçus pour interrompre les courants de surcharge et de défaut en toute sécurité, de protéger les transformateurs, les condensateurs et les lignes de branche. Cependant, les services publics et les équipes d'entretien rencontrent souvent deux problèmes opérationnels frustrants et potentiellement dangereux: les faux trébuchements (soufflage de nuisance) et le non-opération (refus de fusible).
Les isolateurs sont des composants fondamentaux des systèmes d'énergie électrique, servant à soutenir et à isoler les conducteurs tout en empêchant le flux de courant indésirable. Depuis des décennies, la porcelaine et le verre sont les matériaux de choix. Cependant, l'évolution des demandes de réseaux électriques modernes - y compris des tensions plus élevées, des environnements sévères et la nécessité d'une plus grande fiabilité - stimulent des progrès technologiques importants. Cet article explore les dernières innovations de la technologie des isolants et décrit les tendances clés en train de façonner l'avenir de l'industrie.
Dans la vaste et complexe architecture d'un réseau électrique moderne, chaque composant joue un rôle essentiel pour assurer la fiabilité, la sécurité et l'efficacité. Deux de ces composants, souvent visibles sur les tours de transmission et les structures de sous-station, sont des isolateurs et des arrestants de surtension (ou entrepreneurs de foudre). À l'œil non entraîné, ils peuvent sembler similaires - tous les deux sont attachés à des structures et ont une pile de hangars en porcelaine ou en polymère. Cependant, leurs fonctions sont fondamentalement différentes et complémentaires. Comprendre cette distinction est essentiel pour apprécier l'ingénierie derrière un réseau électrique résilient.
La sélection de la surtension du bon est une décision critique pour protéger les actifs électriques et assurer la fiabilité de la grille. Cet article technique fournit aux ingénieurs, aux spécialistes des achats et aux concepteurs de systèmes un guide complet pour 2024. Nous nous plongeons dans les différences fondamentales entre les entretiens de la classe de station et la classe de distribution, analysons les principaux paramètres de sélection des artistes de plein air et offrent un cadre pratique pour la sélection optimale des artistes en plein air.
Introduction des varistations d'oxyde de métal (MOVS), servant de composants principaux des dispositifs de protection des surtensions (SPD), déterminez de manière critique les performances de protection contre la surtension dans les systèmes électriques et l'équipement électronique.
Les varistations d'oxyde métallique (MOV) sont la pierre angulaire de la protection contre la surtension dans les systèmes électriques et électroniques modernes. Comprendre leurs modes de défaillance est essentiel pour assurer la fiabilité et la sécurité du système. Cet article fournit une analyse technique détaillée des trois principaux mécanismes de défaillance pour les mouvements: entrée d'humidité, vieillissement progressif et émail thermique. Nous explorerons les causes profondes, les signatures caractéristiques et les méthodologies pour la distinction entre ces modes après le fait.
Cet article fournit une analyse technique des trois échecs les plus fréquents dans les interrupteurs de déconnexion à haute tension: surchauffe de contact, défaillance de l'opération (refus de fonctionner) et dégradation de l'isolation. Il explore les causes profondes de ces problèmes, propose des solutions pratiques et suggère des stratégies de maintenance préventive pour améliorer la fiabilité de l'équipement et garantir la stabilité du système d'énergie.
En tant que composants de protection et de contrôle critiques dans les lignes de distribution, le fonctionnement stable des fusibles d'abandon affecte directement la fiabilité et la sécurité de l'alimentation. Cet article se plonge dans les causes profondes de trois phénomènes anormaux typiques - fusion de feu, décrochage monophasé et non-interruption. Il fournit des solutions pratiques et des recommandations de maintenance préventive pour aider le personnel de maintenance de l'énergie à améliorer l'efficacité de la manipulation des défauts et à assurer la stabilité du réseau.
Un fusible de découpe des transformateurs est un composant électrique qui empêche les dommages aux transformateurs pour les entreprises et les industries. Cet article vous aidera à acquérir une compréhension complète d'un fusible de découpe de transformateur. Cela inclut ses composants, types, comment il fonctionne et les meilleurs cas d'utilisation.
Les arrents de surtension dans des composants vitaux qui offrent une protection pour les systèmes électriques. Pour assurer un fonctionnement continu, un paramètre que vous devez considérer est la tension de fonctionnement continue maximale (MCOV). Entre autres choses, ce blog expliquera comment calculer le MCOV des arrestants de surtension.
E-mail:jonsonchai@chinahaivo.com
Wechat: +86 13587716869
WhatsApp: +86 13587716869
Tel: 0086-577-62836929
0086-577-62836926
0086-13587716869
0086-15957720101