| État de disponibilité: | |
|---|---|
JCQ-3(E)
Le moniteur de parafoudre JCQ-3E est connecté en série avec le parafoudre ci-dessous, peut être utilisé pour enregistrer le nombre de fois qu'une action de parafoudre, mais aussi par un parafoudre de milliampèremètre de dispositif de surveillance de courant de fuite à la tension de fonctionnement.Parafoudre pour 220KV et au-dessous du niveau du sol, les conditions environnementales du site avec le même parafoudre sont connectées, il ne convient pas à une pollution grave et à un lieu de choc sévère ;la feuille de soupape d'oxyde de zinc, les propriétés électriques sont grandement améliorées.
1. Convient pour l'intérieur ou l'extérieur.
2.Température ambiante(-40~+40)℃。
3.L'altitude ne dépasse pas 2000m.
4.La fréquence d'alimentation (48 ~ 62) Hz.
5. Aucun lieu de vibration sévère.
1. Principe électrique
Moniteur de parafoudre tel que plaque de soupape d'échantillonnage, silicium pont redresseur, condensateur haute tension, compteur électromagnétique, composants milliampèremètres.C'est l'utilisation du courant de décharge du parafoudre, de la plaque de soupape (résistance non linéaire) de la tension générée par le redresseur à pont de silicium, de la charge sur le condensateur, de la décharge vers le compteur électromagnétique, chaque enregistrement à la fois, pour atteindre enregistrer les temps d'action des parafoudres.
2. Ce produit utilise le boîtier en acier inoxydable de haute qualité, a une bonne protection contre la corrosion;la performance d'étanchéité est bonne, n'est pas affectée par l'environnement extérieur.L'élément interne a de bonnes propriétés anti-vieillissement, peut être applicable au fonctionnement du système d'alimentation.Le moniteur de parafoudre de type JCQ-3E utilise un affichage numérique 2 bits, l'affichage est clair, facile à observer;est propice à la fréquence à court terme par enregistrement complet de parafoudre.
| Technique paramètres | 8/20μs limite supérieure en fonctionnement actuel | 8/20μs limite inférieure en fonctionnement actuel | 2ms rectangulaire actuel | 4/10μs impulsion | résiduel tension dans nominal décharge actuel |
| JCQ-3E | 10KA | 50A | 1200A | 100KA | en dessous de 2.5KV |
Installez un compteur en référence à son chiffre global.Le compteur doit être connecté en série entre le parafoudre et la terre, c'est-à-dire qu'il est connecté en parallèle avec les brides sur les deux bornes du socle isolant d'un parafoudre.Lorsque vous installez un comptoir, vous devez d'abord gratter la peinture sur la surface des deux trous de fixation (Φ11) qui se trouve sur la bride du comptoir afin de vous assurer qu'ils sont très bien connectés.Et puis fixez le compteur près du socle d'un parafoudre par boulon de M10x40, qui est un endroit où il est facile d'être surveillé de niveau.C'est aussi une borne de mise à la terre.Connectez ensuite l'extrémité du fil conducteur HT à la barre omnibus sur la bride supérieure du socle d'isolation d'un parafoudre à l'aide d'un boulon Ml0x30.Vérifiez le comptoir après avoir terminé l'installation et il ne doit pas être une pente claire.Vous devez bien l'ajuster en vous référant à la clause 4.2, si l'indicateur d'un compteur ne pointe pas sur '0'.Ensuite, il peut être mis en service.Vous ne devez pas perdre l'écrou M10 qui est peint en rouge et ces six boulons de M6x20 sur le socle afin d'éviter de détruire le joint.La dimension globale et la position d'installation d'un compteur sont indiquées ci-dessous.
4.1) L'utilisateur doit faire un simple expérience ponctuelle dans un compteur avant son exploitation et après son exploitation pendant un ou deux ans.
4.2) Une façon simple de tester la caractéristique de fonctionnement d'un compteur : Vous avez besoin d'un mégohmmètre pour 500V et d'un condensateur pour 600V 10μF.
Procédure de test:
Chargez d'abord le condenseur en tournant le mégohmmètre.Coupez le circuit de charge lorsqu'il charge régulièrement à condition que vous continuiez à faire tourner le mégohmmètre.Faites alors en sorte que le condensateur qui a été bien chargé décharge une fois les deux bornes de la bobine du compteur, ainsi le compteur compte une fois.Vous devriez continuer à faire l'expérience dix fois.Le compteur est bon s'il peut fonctionner normalement et de manière fiable à chaque fois.Si ce n'est pas le cas, il est possible que le compteur ne fonctionne pas ou que sa sensibilité soit plus faible, qu'il nécessite une vérification ou une réparation.
4.3) Si son indicateur ne pointe pas sur '0', vous pouvez également considérer le nombre d'origine sur le compteur comme son nombre cardinal pour le comptage, puis additionner les temps de fonctionnement totaux d'un parafoudre.
Le moniteur de parafoudre JCQ-3E est connecté en série avec le parafoudre ci-dessous, peut être utilisé pour enregistrer le nombre de fois qu'une action de parafoudre, mais aussi par un parafoudre de milliampèremètre de dispositif de surveillance de courant de fuite à la tension de fonctionnement.Parafoudre pour 220KV et au-dessous du niveau du sol, les conditions environnementales du site avec le même parafoudre sont connectées, il ne convient pas à une pollution grave et à un lieu de choc sévère ;la feuille de soupape d'oxyde de zinc, les propriétés électriques sont grandement améliorées.
1. Convient pour l'intérieur ou l'extérieur.
2.Température ambiante(-40~+40)℃。
3.L'altitude ne dépasse pas 2000m.
4.La fréquence d'alimentation (48 ~ 62) Hz.
5. Aucun lieu de vibration sévère.
1. Principe électrique
Moniteur de parafoudre tel que plaque de soupape d'échantillonnage, silicium pont redresseur, condensateur haute tension, compteur électromagnétique, composants milliampèremètres.C'est l'utilisation du courant de décharge du parafoudre, de la plaque de soupape (résistance non linéaire) de la tension générée par le redresseur à pont de silicium, de la charge sur le condensateur, de la décharge vers le compteur électromagnétique, chaque enregistrement à la fois, pour atteindre enregistrer les temps d'action des parafoudres.
2. Ce produit utilise le boîtier en acier inoxydable de haute qualité, a une bonne protection contre la corrosion;la performance d'étanchéité est bonne, n'est pas affectée par l'environnement extérieur.L'élément interne a de bonnes propriétés anti-vieillissement, peut être applicable au fonctionnement du système d'alimentation.Le moniteur de parafoudre de type JCQ-3E utilise un affichage numérique 2 bits, l'affichage est clair, facile à observer;est propice à la fréquence à court terme par enregistrement complet de parafoudre.
| Technique paramètres | 8/20μs limite supérieure en fonctionnement actuel | 8/20μs limite inférieure en fonctionnement actuel | 2ms rectangulaire actuel | 4/10μs impulsion | résiduel tension dans nominal décharge actuel |
| JCQ-3E | 10KA | 50A | 1200A | 100KA | en dessous de 2.5KV |
Installez un compteur en référence à son chiffre global.Le compteur doit être connecté en série entre le parafoudre et la terre, c'est-à-dire qu'il est connecté en parallèle avec les brides sur les deux bornes du socle isolant d'un parafoudre.Lorsque vous installez un comptoir, vous devez d'abord gratter la peinture sur la surface des deux trous de fixation (Φ11) qui se trouve sur la bride du comptoir afin de vous assurer qu'ils sont très bien connectés.Et puis fixez le compteur près du socle d'un parafoudre par boulon de M10x40, qui est un endroit où il est facile d'être surveillé de niveau.C'est aussi une borne de mise à la terre.Connectez ensuite l'extrémité du fil conducteur HT à la barre omnibus sur la bride supérieure du socle d'isolation d'un parafoudre à l'aide d'un boulon Ml0x30.Vérifiez le comptoir après avoir terminé l'installation et il ne doit pas être une pente claire.Vous devez bien l'ajuster en vous référant à la clause 4.2, si l'indicateur d'un compteur ne pointe pas sur '0'.Ensuite, il peut être mis en service.Vous ne devez pas perdre l'écrou M10 qui est peint en rouge et ces six boulons de M6x20 sur le socle afin d'éviter de détruire le joint.La dimension globale et la position d'installation d'un compteur sont indiquées ci-dessous.
4.1) L'utilisateur doit faire un simple expérience ponctuelle dans un compteur avant son exploitation et après son exploitation pendant un ou deux ans.
4.2) Une façon simple de tester la caractéristique de fonctionnement d'un compteur : Vous avez besoin d'un mégohmmètre pour 500V et d'un condensateur pour 600V 10μF.
Procédure de test:
Chargez d'abord le condenseur en tournant le mégohmmètre.Coupez le circuit de charge lorsqu'il charge régulièrement à condition que vous continuiez à faire tourner le mégohmmètre.Faites alors en sorte que le condensateur qui a été bien chargé décharge une fois les deux bornes de la bobine du compteur, ainsi le compteur compte une fois.Vous devriez continuer à faire l'expérience dix fois.Le compteur est bon s'il peut fonctionner normalement et de manière fiable à chaque fois.Si ce n'est pas le cas, il est possible que le compteur ne fonctionne pas ou que sa sensibilité soit plus faible, qu'il nécessite une vérification ou une réparation.
4.3) Si son indicateur ne pointe pas sur '0', vous pouvez également considérer le nombre d'origine sur le compteur comme son nombre cardinal pour le comptage, puis additionner les temps de fonctionnement totaux d'un parafoudre.
Les isolateurs en céramique, principalement composés de silicate d'alumine, sont des composants essentiels des lignes aériennes de transport et de distribution. Leur fiabilité à long terme est remise en question par des facteurs de stress environnementaux entraînant une dégradation des performances. Cet article analyse les mécanismes fondamentaux du vieillissement des isolants céramiques, en mettant l’accent sur le rayonnement ultraviolet (UV) et l’accumulation de pollution. Il explore en outre les dernières avancées en matière de technologies de revêtement fonctionnel conçues pour atténuer ces effets, prolongeant ainsi la durée de vie et garantissant la résilience du réseau.
Pendant des décennies, la mission principale du parafoudre est restée constante : protéger les équipements électriques contre les surtensions transitoires, qu'elles soient causées par des éclairs ou des opérations de commutation, en fournissant un chemin à faible impédance vers la terre et en rétablissant rapidement le fonctionnement normal du système. Cependant, les moyens pour réaliser cette mission subissent une transformation radicale. Poussée par les exigences des réseaux électriques modernes (intégration croissante des énergies renouvelables, numérisation et besoin d'une plus grande fiabilité), la technologie des parafoudres dépasse son rôle traditionnel et passif pour entrer dans une ère de composants intelligents, adaptatifs et hautement résilients.
Les interrupteurs sectionneurs, également appelés sectionneurs ou isolateurs, sont des composants fondamentaux des systèmes d'alimentation électrique. Leur fonction principale est de fournir un point de rupture visible pour l'isolation, garantissant ainsi une maintenance et une réparation sûres des équipements en aval. Contrairement aux disjoncteurs, ils ne sont pas conçus pour interrompre le courant de charge ou le courant de défaut. Cependant, leur fonctionnement fiable (ouverture et fermeture sur commande) est essentiel pour la sécurité, la flexibilité et la disponibilité du système.
Les fusibles, en tant que dispositifs de protection passive essentiels mais souvent négligés, sont fondamentaux pour la sécurité électrique. Leur fonctionnement fiable dépend de l'intégrité des surfaces isolantes et de l'élément fusible. Cet article se penche sur deux modes de défaillance courants : le contournement de la contamination de surface et le vieillissement/dégradation interne. Nous fournissons une analyse technique détaillée des mécanismes, décrivons les techniques d'identification avancées et pratiques et prescrivons un protocole de maintenance systématique pour améliorer la fiabilité du système et éviter les temps d'arrêt inattendus.
La transition mondiale vers les réseaux intelligents représente un changement fondamental dans la façon dont nous produisons, distribuons et consommons l’énergie électrique. Caractérisés par un flux d'énergie bidirectionnel, une intégration profonde des ressources énergétiques distribuées (DER) comme l'énergie solaire et éolienne, une infrastructure de comptage avancée (AMI) et une analyse de données en temps réel, les réseaux intelligents exigent une nouvelle génération de dispositifs de protection. Parmi ceux-ci, le modeste fusible, pierre angulaire de la protection électrique depuis plus d’un siècle, connaît une profonde transformation technologique. L’avenir de la technologie des fusibles réside dans l’évolution d’un simple composant de protection sacrificiel vers un actif de réseau intelligent, adaptatif et riche en données.
Pendant des décennies, la mission principale du parafoudre est restée constante : protéger les équipements électriques contre les surtensions transitoires, qu'elles soient causées par des éclairs ou des opérations de commutation, en fournissant un chemin à faible impédance vers la terre et en rétablissant rapidement le fonctionnement normal du système. Cependant, les moyens pour réaliser cette mission subissent une transformation radicale. Poussée par les exigences des réseaux électriques modernes (intégration croissante des énergies renouvelables, numérisation et besoin d'une plus grande fiabilité), la technologie des parafoudres dépasse son rôle traditionnel et passif pour entrer dans une ère de composants intelligents, adaptatifs et hautement résilients.
Les parafoudres de lignes de distribution (DLSA) servent de dispositifs de protection critiques installés sur les systèmes aériens de distribution d'énergie, généralement évalués entre 1 kV et 38 kV. Leur fonction principale est de protéger les équipements électriques, les transformateurs et les infrastructures contre les surtensions transitoires causées par la foudre, les opérations de commutation et autres perturbations électriques.
MOSCOU, RUSSIE – Du 2 au 4 décembre 2025, Zhejiang Haivo a participé avec succès au Salon international des équipements de réseau électrique en Russie, présentant ses dernières innovations en matière de technologie de protection électrique et de distribution d'énergie.
Les coupe-fusibles à coupure sont des composants essentiels des systèmes de distribution aérienne, offrant une protection et une isolation contre les surintensités. Cependant, une exposition prolongée à des contraintes environnementales, électriques et mécaniques entraîne un vieillissement, ce qui compromet les performances et la fiabilité. Cet article examine les principaux mécanismes de vieillissement et présente des stratégies efficaces de prévention et de maintenance pour prolonger la durée de vie et garantir la sécurité du système.
Les systèmes de fiches et de prises haute tension extérieurs (généralement de 1 kV à 52 kV) représentent des solutions d'ingénierie sophistiquées conçues pour des connexions électriques sûres et fiables dans des environnements exigeants. Ces connecteurs séparables permettent une distribution d'énergie flexible tout en maintenant l'intégrité du système dans les réseaux de services publics, les installations industrielles et les applications d'énergie renouvelable. Contrairement à leurs homologues basse tension, les connecteurs HT nécessitent une attention méticuleuse au contrôle du champ électrique, à la coordination de l'isolation et à la protection de l'environnement.
E-mail:jonsonchai@chinahaivo.com
Wechat: +86 13587716869
WhatsApp: +86 13587716869
Tel: 0086-577-62836929
0086-577-62836926
0086-13587716869
0086-15957720101