| État de disponibilité: | |
|---|---|
Joint droit en résine coulée
Pour câbles et conducteurs polymères
Convient universellement pour connecter des câbles polymères ou des conducteurs isolés avec du PVC, du PE, du XLPE et de l'EPR (par exemple N(A)YY, NYM,TT).Convient pour les connecteurs à compression ou à vis sur les conducteurs en cuivre et en aluminium.
Caractéristiques
Dimensions compactes
Zone d'épissure visible avant la coulée
Coque en plastique antichoc transparent de haute qualité
Grande ouverture de remplissage pour faciliter la coulée
Résistant aux agents chimiques
Résistant aux éléments alcalino-terreux
Stabilisé contre les rayons UV
Étanche longitudinalement et transversalement
Hautes valeurs d'isolation électrique
Haute résistance mécanique
Prêt pour une utilisation immédiate
Un montage simple et rapide permet de gagner du temps et de réduire les coûts
Application/adéquation
Intérieur
Extérieur
Souterrain
Eau
Conduits d'installation
niveau de tension
Uo/U (Um)0,6/1 (1,2) kv
Application/adéquation
1. Retirez les marches de l'extrémité du moule.L'ouverture doit être légèrement plus grande que le diamètre du câble (environ 1 - 2 mm).
2. Insertion de la gaine du câble : φ <20mm : a=2 xc φ > 20 mm : a=40 mm .
3.Installez les connecteurs.
4.Dépolir, dégraisser et nettoyer les gaines des câbles.
5.Centrez l'épissure : la distance entre les connecteurs et entre les conducteurs eux-mêmes, ainsi que l'épissure de chacun à partir du moule doit être d'au moins 5 mm.
6. Enclenchez les moitiés du moule ensemble.
7.Seal moule se termine avec du ruban adhésif en PVC.
8.Mélanger la résine coulée et remplir selon les instructions séparées jusqu'à 3 mm du bord supérieur de l'ouverture de remplissage.
9.Insérez le couvercle.
10. Mise sous tension des câbles : Jusqu'à 1 kV immédiatement après la coulée.
instructions additionnelles
Isolation du noyau en PE, VPE, EPR, etc.
11. Dépolir, dégraisser et nettoyer l'isolation du câble.
Câbles PILC
12. Avec armature et jute : insérez 20 mm d'armature dans le moule ;n'insérez pas de jute.Avec gaine synthétique : dépolir, dégraisser et nettoyer la gaine du câble ;insérer 20 mm dans le moule.
13. Insérez la gaine de plomb (a) comme élément 2. Dégraissez et nettoyez soigneusement la gaine de plomb et l'armure immédiatement avant de verrouiller les moitiés de moule.
14. Retirez complètement le matériau isolant du conducteur et de l'isolation de la courroie.
Matériau d'isolation fluide : Couvrir le mastic et l'isolation en papier avec un agent Oilstop/adhésif.
| CL | FAIBLE | mm^2 | MXY(mm) |
| MM10 | 6-19 | 5*2.5 | 160*36 |
| MM11 | 6-25 | 5*6 | 190*48 |
| MM12 | 14-35 | 4*16 | 240*50 |
| MM13 | 16-37 | 4*25 | 270*65 |
| MM14 | 20-44 | 4*50 | 360*80 |
| MM15 | 26-52 | 4*95 | 430*95 |
| MM16 | 35-65 | 4*150 | 530*120 |
| MM17 | 45-80 | 4*240 | 700*180 |
Joint droit en résine coulée
Pour câbles et conducteurs polymères
Convient universellement pour connecter des câbles polymères ou des conducteurs isolés avec du PVC, du PE, du XLPE et de l'EPR (par exemple N(A)YY, NYM,TT).Convient pour les connecteurs à compression ou à vis sur les conducteurs en cuivre et en aluminium.
Caractéristiques
Dimensions compactes
Zone d'épissure visible avant la coulée
Coque en plastique antichoc transparent de haute qualité
Grande ouverture de remplissage pour faciliter la coulée
Résistant aux agents chimiques
Résistant aux éléments alcalino-terreux
Stabilisé contre les rayons UV
Étanche longitudinalement et transversalement
Hautes valeurs d'isolation électrique
Haute résistance mécanique
Prêt pour une utilisation immédiate
Un montage simple et rapide permet de gagner du temps et de réduire les coûts
Application/adéquation
Intérieur
Extérieur
Souterrain
Eau
Conduits d'installation
niveau de tension
Uo/U (Um)0,6/1 (1,2) kv
Application/adéquation
1. Retirez les marches de l'extrémité du moule.L'ouverture doit être légèrement plus grande que le diamètre du câble (environ 1 - 2 mm).
2. Insertion de la gaine du câble : φ <20mm : a=2 xc φ > 20 mm : a=40 mm .
3.Installez les connecteurs.
4.Dépolir, dégraisser et nettoyer les gaines des câbles.
5.Centrez l'épissure : la distance entre les connecteurs et entre les conducteurs eux-mêmes, ainsi que l'épissure de chacun à partir du moule doit être d'au moins 5 mm.
6. Enclenchez les moitiés du moule ensemble.
7.Seal moule se termine avec du ruban adhésif en PVC.
8.Mélanger la résine coulée et remplir selon les instructions séparées jusqu'à 3 mm du bord supérieur de l'ouverture de remplissage.
9.Insérez le couvercle.
10. Mise sous tension des câbles : Jusqu'à 1 kV immédiatement après la coulée.
instructions additionnelles
Isolation du noyau en PE, VPE, EPR, etc.
11. Dépolir, dégraisser et nettoyer l'isolation du câble.
Câbles PILC
12. Avec armature et jute : insérez 20 mm d'armature dans le moule ;n'insérez pas de jute.Avec gaine synthétique : dépolir, dégraisser et nettoyer la gaine du câble ;insérer 20 mm dans le moule.
13. Insérez la gaine de plomb (a) comme élément 2. Dégraissez et nettoyez soigneusement la gaine de plomb et l'armure immédiatement avant de verrouiller les moitiés de moule.
14. Retirez complètement le matériau isolant du conducteur et de l'isolation de la courroie.
Matériau d'isolation fluide : Couvrir le mastic et l'isolation en papier avec un agent Oilstop/adhésif.
| CL | FAIBLE | mm^2 | MXY(mm) |
| MM10 | 6-19 | 5*2.5 | 160*36 |
| MM11 | 6-25 | 5*6 | 190*48 |
| MM12 | 14-35 | 4*16 | 240*50 |
| MM13 | 16-37 | 4*25 | 270*65 |
| MM14 | 20-44 | 4*50 | 360*80 |
| MM15 | 26-52 | 4*95 | 430*95 |
| MM16 | 35-65 | 4*150 | 530*120 |
| MM17 | 45-80 | 4*240 | 700*180 |
Les isolateurs en céramique, principalement composés de silicate d'alumine, sont des composants essentiels des lignes aériennes de transport et de distribution. Leur fiabilité à long terme est remise en question par des facteurs de stress environnementaux entraînant une dégradation des performances. Cet article analyse les mécanismes fondamentaux du vieillissement des isolants céramiques, en mettant l’accent sur le rayonnement ultraviolet (UV) et l’accumulation de pollution. Il explore en outre les dernières avancées en matière de technologies de revêtement fonctionnel conçues pour atténuer ces effets, prolongeant ainsi la durée de vie et garantissant la résilience du réseau.
Pendant des décennies, la mission principale du parafoudre est restée constante : protéger les équipements électriques contre les surtensions transitoires, qu'elles soient causées par des éclairs ou des opérations de commutation, en fournissant un chemin à faible impédance vers la terre et en rétablissant rapidement le fonctionnement normal du système. Cependant, les moyens pour réaliser cette mission subissent une transformation radicale. Poussée par les exigences des réseaux électriques modernes (intégration croissante des énergies renouvelables, numérisation et besoin d'une plus grande fiabilité), la technologie des parafoudres dépasse son rôle traditionnel et passif pour entrer dans une ère de composants intelligents, adaptatifs et hautement résilients.
Les interrupteurs sectionneurs, également appelés sectionneurs ou isolateurs, sont des composants fondamentaux des systèmes d'alimentation électrique. Leur fonction principale est de fournir un point de rupture visible pour l'isolation, garantissant ainsi une maintenance et une réparation sûres des équipements en aval. Contrairement aux disjoncteurs, ils ne sont pas conçus pour interrompre le courant de charge ou le courant de défaut. Cependant, leur fonctionnement fiable (ouverture et fermeture sur commande) est essentiel pour la sécurité, la flexibilité et la disponibilité du système.
Les fusibles, en tant que dispositifs de protection passive essentiels mais souvent négligés, sont fondamentaux pour la sécurité électrique. Leur fonctionnement fiable dépend de l'intégrité des surfaces isolantes et de l'élément fusible. Cet article se penche sur deux modes de défaillance courants : le contournement de la contamination de surface et le vieillissement/dégradation interne. Nous fournissons une analyse technique détaillée des mécanismes, décrivons les techniques d'identification avancées et pratiques et prescrivons un protocole de maintenance systématique pour améliorer la fiabilité du système et éviter les temps d'arrêt inattendus.
La transition mondiale vers les réseaux intelligents représente un changement fondamental dans la façon dont nous produisons, distribuons et consommons l’énergie électrique. Caractérisés par un flux d'énergie bidirectionnel, une intégration profonde des ressources énergétiques distribuées (DER) comme l'énergie solaire et éolienne, une infrastructure de comptage avancée (AMI) et une analyse de données en temps réel, les réseaux intelligents exigent une nouvelle génération de dispositifs de protection. Parmi ceux-ci, le modeste fusible, pierre angulaire de la protection électrique depuis plus d’un siècle, connaît une profonde transformation technologique. L’avenir de la technologie des fusibles réside dans l’évolution d’un simple composant de protection sacrificiel vers un actif de réseau intelligent, adaptatif et riche en données.
Pendant des décennies, la mission principale du parafoudre est restée constante : protéger les équipements électriques contre les surtensions transitoires, qu'elles soient causées par des éclairs ou des opérations de commutation, en fournissant un chemin à faible impédance vers la terre et en rétablissant rapidement le fonctionnement normal du système. Cependant, les moyens pour réaliser cette mission subissent une transformation radicale. Poussée par les exigences des réseaux électriques modernes (intégration croissante des énergies renouvelables, numérisation et besoin d'une plus grande fiabilité), la technologie des parafoudres dépasse son rôle traditionnel et passif pour entrer dans une ère de composants intelligents, adaptatifs et hautement résilients.
Les parafoudres de lignes de distribution (DLSA) servent de dispositifs de protection critiques installés sur les systèmes aériens de distribution d'énergie, généralement évalués entre 1 kV et 38 kV. Leur fonction principale est de protéger les équipements électriques, les transformateurs et les infrastructures contre les surtensions transitoires causées par la foudre, les opérations de commutation et autres perturbations électriques.
MOSCOU, RUSSIE – Du 2 au 4 décembre 2025, Zhejiang Haivo a participé avec succès au Salon international des équipements de réseau électrique en Russie, présentant ses dernières innovations en matière de technologie de protection électrique et de distribution d'énergie.
Les coupe-fusibles à coupure sont des composants essentiels des systèmes de distribution aérienne, offrant une protection et une isolation contre les surintensités. Cependant, une exposition prolongée à des contraintes environnementales, électriques et mécaniques entraîne un vieillissement, ce qui compromet les performances et la fiabilité. Cet article examine les principaux mécanismes de vieillissement et présente des stratégies efficaces de prévention et de maintenance pour prolonger la durée de vie et garantir la sécurité du système.
Les systèmes de fiches et de prises haute tension extérieurs (généralement de 1 kV à 52 kV) représentent des solutions d'ingénierie sophistiquées conçues pour des connexions électriques sûres et fiables dans des environnements exigeants. Ces connecteurs séparables permettent une distribution d'énergie flexible tout en maintenant l'intégrité du système dans les réseaux de services publics, les installations industrielles et les applications d'énergie renouvelable. Contrairement à leurs homologues basse tension, les connecteurs HT nécessitent une attention méticuleuse au contrôle du champ électrique, à la coordination de l'isolation et à la protection de l'environnement.
E-mail:jonsonchai@chinahaivo.com
Wechat: +86 13587716869
WhatsApp: +86 13587716869
Tel: 0086-577-62836929
0086-577-62836926
0086-13587716869
0086-15957720101